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Wigner’s theorem on symmetry transformations can be formulated in the following
way. If f is a bijective map on the set of all nonzero minimal projections in a
type I factor ! which preserves transition probabilities with respect to a faithful
normal semifinite trace, then it can be extended to a linear *-automorphism or
to a linear *-antiautomorphism of !. In this paper we prove a natural analogue
of this statement for type II factors.

Wigner’s theorem on symmetry transformations plays fundamental role
in quantum mechanics. It has several equivalent formulations. For example,
it can be stated in the following form.

Wigner’s Theorem. Let H be a complex Hilbert space and denote by
P1(H ) the set of all rank-one projections on H. If f : P1(H ) → P1(H ) is a
bijective function for which

tr f(P) f(Q) 5 tr PQ, P, Q P P1(H ) (1)

then there exists either a unitary or an antiunitary operator U on H such that
f is of the form

f(P) 5 UPU*, P P P1(H )

In the language of von Neumann algebras one can reformulate Wigner’s
theorem as follows. Let ! be a type I factor with faithful normal semifinite
trace (or, in the terminology of ref. 4, tracial weight) r. Denote by 3a the
set of all nonzero minimal projections in !. If f : 3a → 3a is a bijective
function with the property that
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r(f(P)f(Q)) 5 r(PQ), P, Q P 3a

then f can be extended to a linear *-automorphism or to a linear *-antiauto-
morphism of !.

The aim of this paper is to prove a similar statement for type II factors.
Since in type II factors, the finite projections play, in some sense, the same
role as the minimal projections do in type I factors, it is tempting to formulate
the following statement. We note that other Wigner-type results for different
structures can be found in our recent papers [6–8].

Theorem. Let ! be a type II factor and let r be a faithful normal
semifinite trace on !. Denote by 3f the set of all nonzero finite projections
in !. Suppose that f : 3f → 3f is a bijective function for which

r(f(P)f(Q)) 5 r(PQ), P, Q P 3f

Then there is either a linear *-automorphism or a linear *-antiautomorphism
F of ! such that

f(P) 5 F(P), P P 3f

Proof. If P P 3f , then by ref. 4, 8.5.2, Proposition, we have r(P) , `.
So, it follows from ref. 4, 8.5.1, Proposition, that r(PQ), r(f(P)r(Q)) are
defined. We assert that for any P, Q P 3f we have PQ5 0 if and only if
r(PQ) 5 0. Indeed, if r(PQ) 5 0, then r(QPPQ) 5 r(QPQ) 5 r(PQQ) 5
r(PQ) 5 0. This gives us that (PQ)*(PQ) 5 0, which yields PQ 5 0.
Consequently, f preserves the orthogonality between the elements of 3f .

We next extend f to an orthoadditive transformation F on the set of
all projections in !. This means that F(P 1 Q) 5 F(P) 1 F(Q) holds for
any projections P, Q P ! with PQ 5 0. Since ! is a factor, every two
projections in ! are comparable. As ! is of type II, it contains a nonzero
finite projection. We deduce that every nonzero projection in ! has a nonzero
finite subprojection. This gives us that every projection in ! is the sum of
a system of pairwise orthogonal finite projections. Now, let P P ! be any
projection. If (Pa) is a system of pairwise orthogonal finite projections whose
sum is P, then we define

F(P) 5 o
a

f(Pa)

This sum is defined since f preserves orthogonality. We show that F is well-
defined. If (Qb) has the same properties as (Pa) above and R P ! is any
finite projection, then, by the normality of r, we infer
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r(f(R) o
a

f(Pa)f(R)) 5 o
a

r(f(R)f(Pa)f(R)) 5 o
a

r(f(Pa)f(R))

5 o
a

r(PaR) 5 o
a

r(RPaR) 5 r(R o
a

PaR)

Similarly, we have

r(f(R) o
a

f(Qb)f(R)) 5 r(R o
b

QbR)

Therefore, we obtain that

r(f(R) o
a

f(Pa)f(R)) 5 r(f(R) o
a

f(Qb)f(R))

holds for every finite projection R in !. Since f maps onto 3f , it follows
that, with the notation P8 5 (a f(Pa) and Q8 5 (bf(Qb), we have

r(RP8R) 5 r(RQ8R)

for every finite projection R in !. We claim that this implies that P8 5 Q8.
To verify this, let R # P8 be a finite subprojection. We obtain that RQ8R #
RIR 5 R 5 RP8R. Since R is a finite projection, it follows that r(RP8R),
r(RQ8R) , `. As r(RP8R) 5 r(RQ8R), by the faithfulness of r we infer
from r(R(P8 2 Q8)R) 5 r(RP8R) 2 r(RQ8R) 5 0 that R 5 RP8R 5 RQ8R
for every finite subprojection R of P8. We assert that this implies R # Q8.
Indeed, we have Q8RQ8R 5 Q8(RQ8R) 5 Q8R, showing that Q8R is an
idempotent. On the other hand, |Q8R| # | Q8|?|R | 5 1, so Q8R is a contractive
idempotent. But this implies that Q8R is a projection and hence we have
Q8R 5 (Q8R)* 5 RQ8 and we get Q8R 5 RQ8 5 RQ8R 5 R. This yields
that R # Q8. Since R is an arbitrary finite subprojection of P8, we obtain
that P8 # Q8. Interchanging the role of P8 and Q8, we get the opposite
inequality Q8 # P8. Therefore, P8 5 Q8 and hence F is well defined.

Clearly, F is orthoadditive on the set of all projections. By the solution
of the Mackey–Gleason problem [1], F can be extended to a bounded linear
operator on !. Denote this extension by the same symbol F. Since F sends
projections to projections, it is a standard algebraic argument to show that
F is a Jordan *-homomorphism (see, for example, the proof of ref. 5, Theorem
2). Since f maps onto 3f , we obtain that the range of F contains the set of
all projections. Since F is a positive linear map on a unital C*-algebra, it
follows that F is norm-continuous. By ref. 2, 5.3, Theorem, every closed
Jordan ideal in a C*-algebra is an (associative) ideal. Therefore, F induces
an injective Jordan *-homomorphism on the quotient C*-algebra !/ ker F.
Now, it follows from ref. 9, Corollary 3.5 that the range of F is closed. Since
! is linearly generated by the set of all of its projections in the norm topology,
we obtain that F is surjective. We show that F is injective as well. Let B P
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! be a positive operator in the kernel of F. This kernel is an ideal and the
values of spectral integrals of bounded Borel functions with respect to the
spectral measure corresponding to B belong to !. Multiplying B with an
appropriate such spectral integral, we see that the spectral measure E of any
Borel subset of the spectrum of B which is in a positive distance from 0
belongs to the kernel of F. That is, we have F(E ) 5 0. If E Þ 0, then E
has a nonzero finite subprojection P. From f(P) 5 F(P) # F(E ) 5 0 we
have f(P) 5 0, which is a contradiction. So, E 5 0 and by spectral theorem
we conclude that B 5 0. Suppose now that F(A) 5 0 for some A P !. We
have F(A* A 1 AA*) 5 F(A)*F(A) 1 F(A)F(A)* 5 0. Since A*A 1 AA*
is a positive operator belonging to the kernel of F, it follows that it is 0,
which gives us that A 5 0. This proves the injectivity of F.

It is well known that every factor is a prime algebra, that is, A!B 5
{0} implies that A 5 0 or B 5 0 (A, B P !). By a classical theorem of
Herstein [3], every Jordan homomorphism onto a prime algebra is either
a homomorphism or an antihomomorphism. This completes the proof of
our theorem. n
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